MOTOROLA -
rder this document

Semiconductor Products Sector by AN432/D
Application Note

AN432

128-Kbyte Addressing with the M68HC11

By Ross Mitchell
MCU Applications Engineering
Motorola Ltd.
East Kilbride, Scotland

Overview

The maximum direct addressing capability of the M68HC11 device is
64 Kbytes, but this can be insufficient for some applications.

This application note describes two methods of memory paging that
allow the MCU to fully address a single 1 megabit EPROM (128 Kbytes)
by manipulation of the address lines.

The two methods illustrate the concept of paging and the inherent
compromises. The technique may be expanded to allow addressing of
several EPROM, RAM, or EEPROM memories, or several smaller
memories by using both address lines and chip enables.

ats

““Digital DNA

© Motorola, Inc., 1990, 2001 from Motorola

Application Note

Paging Scheme

The M68HC11 8-bit MCU is capable of addressing up to 64 Kbytes of
contiguous address space. Addressing greater than 64 Kbytes requires
that a section of the memory be replaced with another block of memory
at the same address range. This technique of swapping memory is
known as paging and is simply a method of overlaying blocks of data
over each other such that only one of the blocks or pages is visible to the
CPU at a given time.

In a system requiring more than 64 Kbytes of user code and tables, it is
possible to use the port lines to extend the memory addressing range of
the M68HC11 device. This has certain restrictions, but these can be
minimized by careful consideration of the user code implementation.

There are two basic configurations:

* Method A uses only software plus a single port line to control the
high address bit A16.

« Method B is a combination of a small amount of hardware and
software controlling the top three address bits — Al14, Al15, and
Al6.

In the examples that follow, the MC68HC11G5 device is used to
demonstrate the paging techniques, since this device has a non-
multiplexed data and address bus. Any M68HC11 device may be used
in a similar way.

Method A has the advantage of no additional hardware and very few
limitations in the software. The user code main loop can be up to

64 Kbytes long and remain in the same page, but this is at the expense
of longer interrupt latency. The vector table and a small amount of code
must be present in both pages of memory to allow correct swapping of
the pages.

Method B has the advantage of not affecting the interrupt latency and
has just one copy of the vector table. The maximum length of the user
code main loop in this example is 48 Kbytes with a further five paged
areas of 16 Kbytes for subroutines and tables.

AN432

MOTOROLA

Application Note
Method A — Software Technique

Method A — Software Technique

AN432

Address A16 of the EPROM is directly controlled by port D(5) of the
M68HC11 as shown in Figure 1. This port is automatically configured to
be in the input state following reset. It is vital that the state of the port line
controlling address A16 is known following reset and so there is a 10-kQ
pullup resistor on this port line to force the A16 address bit to a logic high
state following reset. This port bit is then made an output during the
setup code execution, but care must be taken in ensuring that the data
register is written to a logic 1 before the data direction register is written
with a 1 to make the port line output a high state.

This port bit allows the M68HC11 to access the 128-Kbyte EPROM as
two memories of 64 Kbytes each, which are paged by changing the state
of the address A16 line on the EPROM. It is important to make sure that
the port timing enables the port line to change state, at least the setup
and hold time, before the address strobe (E clock rising edge on the
MC68HC11G5), otherwise, there could be problems with address
timing.

Figure 2 shows a schematic representation of the paging technique for
this method where there are two separate 64-Kbyte pages of memory
which may be addressed only individually.

This paging scheme means that code cannot directly jump from one
64-Kbyte page to another without running some common area of code
during the page switch. This may be accomplished in two basic ways:

e The user code could build a routine in RAM, which is common to
both pages, since it is internal and, therefore, unaffected by the
port D(5) line.

e The user code could have the same location in both pages
devoted to a page change routine.

The example software listing in Appendix A — Software Paging
Scheme uses the latter approach.

MOTOROLA

Application Note

Interrupt Routines

The change of page routine stores the current page before setting or
clearing the port D(5) line and then has a jump command which must be
at exactly the same address in both pages of memory. This is because
the setting or clearing of the port D(5) line will immediately change the
page of memory but the program counter will increment normally. Thus
a change from page 0 to page 1 will result in the BSET PORTD
command from page 0 followed by the JMP 0,X instruction from page 1
(the new page). To enable a jump to work, the X index register has been
loaded with the address of the routine to be run in the new page.
Figure 3 shows the execution of code to perform a change of page from
page 1 to page O.

Returning from the interrupt routine requires the return-from-interrupt
(RTI) command to be replaced with an RTI routine that checks the RAM
location containing the memory page number prior to the interrupt
routine execution. The routine then either performs an RTI command
immediately, if it is to remain in the same page, or otherwise changes the
state of the port D(5) line and then performs an RTI command in the
correct page. Note that as with the JMP 0,X command, the RTI must be
at the same address in both pages. It is important that the | bit in the
condition code register (CCR) (interrupt inhibit) is set during this time for
the example code to run correctly. Otherwise, the return page may be
altered. This limitation can be overcome by using the stack to maintain
a copy of the last page prior to the current interrupt.

The latency for an interrupt routine in a different page from the currently
running user code is increased by 21 cycles on entering the interrupt
routine and 18 cycles on leaving the interrupt routine. Any interrupt code
that could not tolerate any such latency could be repeated in both pages
of memory.

AN432

MOTOROLA

Other Routines

Important
Conditions

AN432

Application Note
Method A — Software Technique

Jumping from one page to another may be done at any time by using the
same change of page routine, but there is no need to store the current
page in RAM, and so these two lines of code become redundant. In the
example, the change page routine could be started at the BCLR or BSET
command and save four cycles. This would, therefore, reduce the page
change delay to 17 cycles. Note that it is not possible to perform a JSR
command to move into the other page with the method shown in the
example, since the RTS would not return to the original page. However,
a modification to the return-from-interrupt routine would allow an
equivalent function for a return from subroutine. In this case, the stack
should be used to maintain the correct return page or the | bitin the CCR
should be set to prevent interrupts.

The state of the port line controlling address A16 after reset is very
important. In the example, port D(5) is used which is an input after reset
and has a pullup resistor to force a logic high on A16. If an output-only
port line was used, then it could be reset such that A16 is a logic O (ho
pullup resistor required), which has an important consequence. The
initialization routine which sets up the ports must be in the default page
dictated by the state of address A16 following reset; otherwise, the user
code may not be able to correctly configure the ports and hence be
unable to manipulate address A16. Similarly, a bidirectional port line
could have a pull-down resistor to determine the address A16 line after
reset with the same implications.

The assembler generates two blocks of code with identical address
ranges used by the user code. This could not be programmed directly
into an EPROM since the second page would simply attempt to
overwrite the first page. The code must, therefore, be split into two
blocks and programmed into the correct half of the EPROM. Some
linkers may be capable of performing this function automatically.
Figure 2 illustrates the expansion of the pages into the 128-Kbyte
EPROM memory.

The RAM and registers, and internal EEPROM if available and enabled,
will all appear in the memory map in preference to external memory, so
care must be taken to avoid these addresses or move the RAM or
registers away to different addresses by writing to the INIT register.

MOTOROLA

FFFFFF

AAAAA

AN432

Application Note

Method A — Software Technique

128-KBYTE EPROM

TOGGLE PORT A-4
JUMP TO CHANGE PAGE ROUTINE

CHANGE TO PAGE 1
JMP, X

VECTORS

TOGGLE PORT A-3
JUMP TO CHANGE PAGE ROUTINE

CHANGE TO PAGE 0
JMP, X

VECTORS

1 — Jump to change page routine
2 — Page changes to page 0
3 — Jump to address in X register (in page 0)

$00000

PAGE 0
$0F800

$OFFFF
$10000

PAGE 1

$1F800

DEFAULT PAGE

$1FFFF

Figure 3. Flow of Program Changing from Page 1 to Page O

MOTOROLA

Application Note

Voo
68HC11 .
10kQ 1-MBIT EPROM
T4HC157
Al4
MUX Al4
PD3
Al5
MUX Al5
PD4
PD5

74HC27

A0-A13 A0-A13

D0-D7 |- | D0-D7
74HC00

RIW

Figure 4. Hardware and Software Paging Schematic Diagram

cs
1

AN432

8 MOTOROLA

Application Note
Method B — Combined Hardware and Software Technique

Method B — Combined Hardware and Software Technique

AN432

The basic approach to this method is the same as in Method

A — Software Technique except that hardware replaces some of the
software. A port line together with M68HC11 addresses Al4 and A15
are NORed to control the address A16 line of the EPROM. This signal is
also used to select between the port line and address line for A15 and
A15 (see Figure 4). The hardware between the port lines controlling the
Al4 and A15 addresses enables 64 Kbytes of user code to be
addressed at all times with 48 Kbytes common to all the pages and then
selecting one of five 16-Kbyte pages of EPROM memory.

In the example, port D(3) and address A14 are connected to the input of
a 2-channel multiplexer such that port D(5), address Al4, and address
A14 control which of these two signals reaches the Al4 pin of the
EPROM. If addresses Al14 or A15 are logic 1, the NOR gate outputs a
logic O state, ensuring the A16 pin of the EPROM is a logic 0. In this
case, address A14 controls the A14 pin of the EPROM and similarly A15
and port D(4) are selected such that address A15 controls the A15 pin of
the EPROM. Thus the main 48-Kbyte portion of the EPROM memory
may be addressed at all times at addresses $4000 up to $FFFF. With
port D(5) and address A14 and A15 all at logic O (address range $0000
to $3FFF), the port lines port D(3) and port D(4) are selected in place of
address lines A14 and A15. Page 0 is always selected whenever

port D(5) is alogic 1. This makes it possible to have one of the five pages
of 16 Kbytes paged into the 64-K addressing range of the HC11 while
always maintaining the main 48 Kbytes of user code in the memory map.

There are few restrictions on the user code since the hardware provides
the switching logic. Code can be made to run from one paged area to
another by jJumping to an intermediate routine in the main page. Port D
is configured to be in the input state following reset which results in the
main page plus page 0 of the paged memory in the 64-Kbyte address
map since the port D lines each have a pullup resistor to maintain a logic
high state after reset. A simple change memory map routine can then
bring in the desired page at any time. Appendix B — Hardware and
Software Paging Scheme shows the assembly code for a program that
toggles different port pins in each of the five pages controlled from a

MOTOROLA

Application Note

Implementation
in C Language

Interrupt
Conditions

Important
Conditions

main routine in the main page. Figure 5 shows the five overlaid pages
expanded to a 128-K map with the flow of the program demonstrating a
change from page 0 to page 1 by running the change page subroutine
shown in bold type.

The demonstration code was originally written in assembly language,
but it may also be implemented in C, as shown in

Appendix C — C Language Routines for Method B. The change of
page routines were written in C with the first part an example of using in-
line code and the second part calling a function. The short example
shows the assembly code on the left, generated by the C code on the
right. This is very similar to the assembly code example in

Appendix B — Hardware and Software Paging Scheme, and so it is
possible to extend the memory addressing beyond 64-Kbytes with the C
language just as with assembly language.

The interrupt routines have normal latency when they reside in the main
48-Kbytes page since this is always visible to the CPU. The 25-cycle
delay for changing pages may cause problems for interrupt routines in a
paged area of memory.

There are few special conditions for this method. The vectors must point
to the main page of memory where the page changing routine must also
reside. Routines in a paged area can only move to another page via the
main 48-Kbyte page unless the technique in method A is utilized (for

example, page change routine duplicated at identical addresses in both

pages).

As with method A, the RAM and registers and internal EEPROM, if
available and enabled, will all appear in the memory map in preference
to external memory, so care must be taken to avoid these addresses or
move the RAM or registers away to different addresses.

AN432

10

MOTOROLA

Customization

AN432

Application Note
Method B — Combined Hardware and Software Technique

The assembler generates five blocks of code with identical address
ranges used by the user code plus the main 48-Kbyte section. This could
not be programmed directly into an EPROM since the second and
subsequent pages would simply attempt to overwrite the first page. The
code must, therefore, be split into blocks and programmed into the
correct part of the EPROM. Some linkers may be capable of performing
this function automatically.

Figure 6 illustrates the expansion of the pages into a single 128-Kbyte
EPROM memory.

Clearly, the size of the paged areas may be made to suit the application
with, for example, a 32-Kbyte main page and three 32 Kbytes of paged
memory simply by not implementing control over the A14 address of the
EPROM and not including port D(3) control. Similarly, by adding another
port line to control address A13, the main program can be 56 Kbytes with
nine pages of eight Kbytes each.

MOTOROLA

11

Application Note

TOGGLE PORT A-3
AND RETURN TO MAIN PROGRAM

SET UP PORT D FOR PAGE CONTROL

JSR TO PAGE 0 CHANGE SUBROUTINE
JSR TO PAGE 0

JSR TO PAGE 1 CHANGE SUBROUTINE
JSR TO PAGE 1

JSR TO PAGE 2 CHANGE SUBROUTINE
JSR TO PAGE 2

ETC.

CHANGE TO PAGE 0 AND RETURN

CHANGE TO PAGE 1 AND RETURN

CHANGE TO PAGE 2 AND RETURN

ETC.

VECTORS

TOGGLE PORT A-4
AND RETURN TO MAIN PROGRAM

TOGGLE PORT A-5
AND RETURN TO MAIN
PROGRAM

TOGGLE PORT A-6
AND RETURN TO MAIN
PROGRAM

TOGGLE PORT A-7
AND RETURN TO MAIN
PROGRAM

1 — Return to page 0
2 — Jump to page 1 routine
3 — Return from page 1 to main page

$00000
PAGE 0O

$04000

MAIN PAGE

$10000

PAGE 1

$14000

PAGE 2

$18000

PAGE 3

$1C000
PAGE 4

$1FFFF

Figure 5. lllustration of Changing from Page 0 to Page 1

AN432

12

MOTOROLA

64-KBYTE CPU
ADDRESS

$0000

$3FFF
$4000

$FFFF

Application Note
Method B — Combined Hardware and Software Technique

EXPANDED
MEMORY
ADDRESS

PAGE 0

PAGE 0

$00000

$03FFF

PAGE 3

EACH PAGE
=16 KBYTES

PAGE 4

MAIN PAGE

$04000

$OFFFF

MAIN PAGE
48 KBYTES

PAGE 1

$10000

$13FFF

PAGE 2

$14000

$17FFF

PAGE 3

$18000

$1BFFF

PAGE 4

$1C000

$1FFFF

Figure 6. Hardware and Software Paging Representation

METHOD A METHOD B
$0000 PAGE 1 ‘ $0000 PAGE 0 ‘
PAGE 1 ‘
PAGE 2 ‘
S3FFF
$4000 PAGE 3 ‘
PAGE 4
PAGE 1
MAIN PAGE

$FFFF

$FFFF

AN432

Figure 7. Comparison of Paging Schemes

MOTOROLA

13

Application Note

In General

Beyond
128 Kbytes

In Conclusion

In both methods, the registers may be moved to more appropriate
addresses. If the usage of RAM is not critical, the registers may be
moved to address $0000 by writing $00 to the INIT register immediately
after reset. For the MC68HC11G5, this means losing 128 bytes of RAM,
but results in a clean memory map above $1FF. In the examples, the
registers and RAM remain at the default addresses and so care must be
taken not to have user code from address $0000 to $01FF and $1000 to
$107F for the MC68HC11G5. Note that the MC68HC11E9 and
MC68HC11A8 have slightly different RAM and register address ranges
plus the internal EEPROM which should be disabled if not used.

Figure 7 demonstrates the differences between the paging techniques
by showing the overlap of the pages. The number and size of the pages
can easily be modified by small changes to the page change routines
and hardware.

Both techniques may be scaled up with several port lines controlling
address lines beyond address A15 with the addition of further change
page routines and enhancing the return-from-interrupt routine to allow a
return to a specific page in method A or the addition of further
multiplexing logic in method B.

The two methods described in detail are the basis for many other ways
of controlling paging on a single large EPROM memory device or several
smaller EPROMSs. It is a simple matter to scale up or modify the
techniques to suit a particular application or EPROM.

The software approach is the cheapest and allows for a main program of
up to the full size of the EPROM while the combined hardware and
software approach has a maximum main program size of 48 Kbytes (in
this example) and no additional interrupt latency.

AN432

14

MOTOROLA

Application Note
Appendix A — Software Paging Scheme

Appendix A — Software Paging Scheme

OCoO~NOUITRAWNE

19 00000000
20 00000001
21 00000004
22 00000006
23 00000007
24 00000008
25 00000009
26 00000024
27 00000025
28 00000040
29 00000040
30 00000026
31 00000080
32 00001000

40 00000000
41 00000001

43 00000020
44 00000200
45 0000f 800
46 0000ffcc

63 00000200
64 00000203

71 00000206
72 0000020a
73 0000020e
74 00000211

AN432

ce0200
7ef 800

181c0010
181d0010
ce0216
7ef 800

k%% EXTENDA. ASC ***kkkkkkkkkhkkkhkkkkkkkkkkkkkkkkkhhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk k% k

TESTS EXTENDED MEMCORY CONTROL

*

*

*

*

* For a single 1Mbit (128K byte) EPROM split into 2 x 64K byte pages
* Al6 is connected to Port D(5) which then selects which half of

* the EPROM is being accessed. PD5 = 1 after reset since it is in

* the input state with a pull-up resistor to Vvdd.
*
*
*
*
*
*
*
*

This code is witten for the 68HC11G5 MCU but can be easily nodified

to run on any 68HC11 device. The 68HC11G5 has a non-nmultipl exed
address and data bus in expanded node.

LR L EY

*

PORTA EQU $00

DDRA EQU $01

PORTB EQU $04

PORTC EQU $06

DDRC EQU $07

PORTD EQU $08

DDRD EQU $09

TMBK2 EQU $24

TFL& EQU $25

RTI I EQU $40

RTI F EQU $40

PACTL EQU $26

DDRA7 EQU $80

REGS EQU $1000

*

IR R R R R R R SRR E R R R R R R R R R R R R R R R R RS RS ESE RS RS EEEREEEEEEEEEREEREREEREEEEEREREEEEREEREEEEERSESES
*

* RAM definitions (from $0000 to $01FF)
*

R RS X xY

ORG $0000
PAGE RMVB 1 page nunber prior to interrupt
TI ME RVB 2 counter value for real time interrupt routine
*
NPAGE EQU $20 PORT D-5 page control |ine
ROVBASE EQU $0200 Avoi d RAM (from $0 to $1FF)
CHANGE EQU $F800
VECTORS EQU $FFCC
*

R L X xY

START OF MAIN PROGRAM

B S 6 1 o o o o o o 0 2 S i)

*

* page 0 (1st hal f of EPROV

*

*

B R I e A 2 i o 2 o
org ROVBASE

IR R R E R E RS R EE R R R R R R R R R R R R R R R RS R RS ES RS RS R RS EEEREEEEREEREEEREEREREEREEEEEREREREEEREEEEEREERSEESES

*

* Redirect reset vector to page 1

*

R R R X xY

RESETO LDX #RESET
JWP CHGPAGEO

IR R R E R R R SRR EEE R R R R R R R R R R R R R ER R RS R RS EE R RS EEEREEEREEREEEREEREEREEEEEEEREREREEEEEEEEEERSESES
*

* 2nd hal f of page 0 loop running in page 1

*

IR R R E R R RS R EEEEEE R R R R R R R R R R R R R RS R RS R RS EREREEEEEEREEEREREREEREEEEEREEREEEREEEEEEERESESES

LOOPPO BSET PORTA, Y, #$10 Toggle bit 4
BCLR PORTA, Y, #$10
LDX #LOOPP1 get return address in page 1
JWP CHGPAGEO junp to change page routine
*

IR R R E R E RS R EEEEEEEEEEEEE R R R R R R RS RS RS R RS EEEE RS EEEREEEEEEREEEREEREEREEREEEEEREREREEEREEEEEESEESESSES
*

* Real time interrupt service routine

*

IR R R E R R RS R EEEEEE R R R R R R R R R R R R RS RS EEEE R EE RS EREREREEEREEEREREEREEEEEEEEREEEEREEREEEESEESESSES]

MOTOROLA

15

Application Note

81 00000214 181e254001 RTI SRV BRSET TFL@, Y, #RTI F, RTI SERV
82 00000219 3b RTI return if not correct interrupt source
83 * This is an RTI because interrupt vector
84 * only points here when in page 1
85 *
86 0000021a RTI SERV
87 0000021a 8640 LDAA #9%©1000000 page O interrupt starts here
88 0000021c 18a725 STAA TFLR,Y clear RTI flag
89 0000021f 9602 LDAA TI ME+1 get the time counter
90 00000221 4c I NCA increment counter
91 00000222 b71004 STAA PORTB+REGS store time in port B
92 00000225 deO1l LDX TI ME
93 00000227 08 I NX
94 00000228 fdo1l STX TI VE and copy back into RAM
95 0000022a 7ef 80a JWP RETRTI O junp to RTI routine
96 *
97
98 IR R R R R R RS R SRS RS R R RS RS E R R SRR EEEEEEREEEEEEEEEEEEEEEEEREEREEEEE RS ESES]
99 *
100 * CHANGE PAGE ROUTI NE
101 *
102 * This code nust be executed with the I-bit set to prevent interrupts
103 * during the change if it is a junp for an interrupt routine.
104 * Otherw se PACGE coul d be updated and then another interrupt could
105 * occur before the PAGE was changed causing the first interrupt
106 * routine to return to the wong page
107 * The PAGE variable is not required for a normal junp and so it does
108 * not require the I-bit to be set (only the BSET is inportant).
109 *
110 * This code is repeated for the same position in both pages
lll IR R R R R R R SRR RS R RS EEEE R SRR EEEEEEEEEEEEEEEEEEEEEEEREEEEEEE RS ESES
112 * junp routine
113 ORG CHANGE Address for this routine is fixed
114 * cycles
115 0000f 800 CHGPAGEQ
116 0000f 800 8600 LDAA #0 2 set current page nunber = 0
117 0000f 802 9700 STAA PAGE 2 store page page nunber
118 0000f804 181c0820 BSET PORTD, Y, #NPAGE 8 change page by setting PD-5
119 0000f 808 6e00 JWP 0, X 3 This code is the same in both pages
*
%gg IR R R R R R R SRR RS RS EE RS RS RS R RS EEEREEEEEEEEEEEEREREEEEEEEEEEEEREEEEEEERSESEES]
122 * return frominterrupt routine running in page 0
123 *
124 *
125 * check if interrupt occurred while code was running in page 1
126 * and return to page 1 before the RTI conmand is perforned
*
%g; IR R R R R R R SRR E R R R R R R R R R R R R R R R R RS R RS ES R RS R R RS EEEREEEEEEEEEREEREREEREEEEEREREREEEREEEEEEERSESES
129 * cycl es
130 0000f 80a RETRTI 0
131 0000f 80a 9600 LDAA PAGE 2 get page the interrupt occured in
132 0000f 80c 8101 CVWPA #1 2 isit page 1
133 0000f80e 2701 BEQ RTI PAGEO 3 if yes then change page
134 0000f810 3b RTI 12 otherwise, return frominterrupt
135 0000f811 RTI PAGEO
136 0000f811 181c0820 BSET PORTD, Y, #NPAGE 8 change page and return frominterrupt
137 0000f815 3b RTI 12 This codes is the same in both pages
138 *
139
140 IR R R E R R R SRR E R R R R R R R R R R R R R R R RS RS ES RS RS EEREEEEEREEEEEREEEREREREEEEEEEEREREEEREEEEEEERSESES]
141 * VECTORS
142 IR R R E R R R SRR E R R R R R R R R R R R R R R R R RS R RS RS R RS EE R RS EEEREEEEEREEEREREREEEREEEEEREEEREEREEEEEEERSESES
143 *
144 ORG VECTORS
145 0000ffcc 0200 FDB RESETO EVENT 2
146 0000ffce 0200 FDB RESETO EVENT 1
147 0000ffdo 0200 FDB RESETO TI MER OVERFLOW 2
148 0000ffd2 0200 FDB RESETO I NPUT CAPTURE 6 / OUTPUT COMPARE 7
149 0000ffd4 0200 FDB RESETO I NPUT CAPTURE 5 / OUTPUT COMPARE 6
150 0000ffd6 0200 FDB RESETO Scl
151 0000ffd8 0200 FDB RESETO SPI
152 0000ffda 0200 FDB RESETO PULSE ACC | NPUT
153 0000ffdc 0200 FDB RESETO PULSE ACC OVERFLOW
154 0000f f de 0200 FDB RESETO TI MER OVERFLOW 1
155 0000ffe0 0200 FDB RESETO I NPUT CAPTURE 4 / OUTPUT COMPARE 5
156 0000ffe2 0200 FDB RESETO OUTPUT COVPARE 4
157 0000ffe4 0200 FDB RSEETO OUTPUT COVPARE 3
158 0000ffe6 0200 FDB RESETO OUTPUT COVPARE 2
159 0000ffe8 0200 FDB RESETO OUTPUT COVPARE 1
160 0000ffea 0200 FDB RESETO I NPUT CAPTURE 3
161 0000ffec 0200 FDB RESETO I NPUT CAPTURE 2
162 0000ffee 0200 FDB RESETO I NPUT CAPTURE 1
163 0000fff0 0214 FDB RTI SRV REAL TI ME | NTERRUPT
164 0000fff2 0200 FDB RESETO I RQ
165 0000fff4 0200 FDB RESETO Xl RQ
166 0000fff6 0200 FDB RESETO SW
167 0000fff8 0200 FDB RESETO | LLEGAL OPCODE

AN432

16 MOTOROLA

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

0000fffa
0000fffc
0000fffe

00000200
00000203
00000206
00000208
0000020c
00000210
00000213
00000216
00000216
00000217
00000219

0000021b
0000021c
00000220
00000222
00000225
00000228
0000022b
0000022d
00000230
00000233
00000234

00000235

0200
0200
0200

8e01f f
bd021b
86f f
181c0008
181d0008
ce0206
7ef 800

4a
26ef
20eb

of
18cel000
86f f
b71001
b71008
b71009
8640
b71025
b71024
Oe

39

181e254001

0000023a 3b

0000023b
0000023b
00000233

0000f 800
0000f 800
0000f 802
0000f 804
0000f 808

AN432

ce02la
73f 800

8601
9700
181d0820
6e00

Application Note
Appendix A — Software Paging Scheme

FDB RESETO cor
FDB RESETO CLOCK MONI TOR
FDB RESETO RESET

LR L X xY

e s e
*

* page 1 (2nd half of EPROM

*

*

* +++++++++++++ A
IR R R R R R RS RS RS RS E SRS RS RS E R SRS EEEEEEEEREEREREEEEEEEEREEREEREEREEEEE RS ESES]
*

* MAIN ROUTI NE NOT UNDER | NTERRUPT CONTROL

*

IR R R E R R RS RS RS RS RS R RS RS EEEEEEEEEREEEREEEEEEEEEEEEREEREEREEREEEEERSESEES]

ORG ROVBASE
RESET LDS #$01FF

JSR SETUP initialize RTI interrupt and DDRs
LOOP1 LDAA #S$FF
LooP BSET PORTA, Y, #$08 Toggle bit 3
BCLR PORTA, Y, #$08
LDX #LOOPPO set up junmp to other page
JWP CHGPAGEL go to other page
LOOPP1
DECA return point from other page
BNE LOooP toggle port A
BRA LOOP1 start |oop again
*
IR R R R R R RS RS RS RS E SRS RS RS ESEEEREEEEEEEEEEEEEEEEEEEEEEREEREEREEEEEEERSESES]
* I NI TI ALI ZATI ON ROUTI NE
IR R R R R R RS R R E R R R R R R R R R R R R R R R R R R RS RS EE RS RS RS EE RS EEEREEEEEEEEEEREEREREEEEEEEEEEREEREEEEEEERSESEES
*
SETUP SE
LDY #$1000 Regi st er address offset
LDAA #S$FF
STAA DDRA+REGS make port A all outputs
STAA PORTD+REGS make sure port D5 1s witten a 1
STAA DDRD+REGS and only then make all outputs
LDAA #9%©1000000
STAA TFL&+REGS clear RTI flag
STAA TMSK2+REGS enable RTI interrupt
CLI
RTS
IR R R R R R RS RS E R R R R R R R R R R R R R R R RS R RS EEE RS R R RS EEEREEEEEREEEEEREREEEEEEEEREEEEREEEEEEERSESES
*
* Redirect to the Real tine interrupt service routine
* Page 1 routine for service routine located in page 0
IR R R E R R R SRR E R R R R R R R R R R R R R R R R R RS RS RS EE RS RS ESEEEREEEEEEREEEREREREEEEEEEREREEEREEEEEEERSESES]
*
I NTRI BRSET TFLQ@, Y, #RTI F, GOODI NT
RTI return if not correct interrupt source
* This is an RTI because interrupt vector
* only points here when in page 1
*
GOODI NT cycl es
LDX #RTI SERV 3 get the interrupt entry point in page O
JwP CHPAGE! 3 junp to change page routine

*

LR R RS X xY

CHANGE PAGE ROUTI NE

Thi s code nust be executed with the I-bit set to prevent interrupts
during the change if it is a junp for an interrupt routine

Ot herwi se PAGE could be updated and then another interrupt could
occur before the PAGE was changed causing the first interrupt
routine to return to the wong page.

The PAGE variable is not required for a normal junp and so it does
not require the I-bit to be set (only the BCLR i s iInportant)

N B

This code is repeated for the same position in both pages
IR R R R R EEEE SRS R R RS R R R R R R R R R R SR EEEEEEEEEEREEEEEEEEEEEEEEEEEEEEREEEREEREREEREEREERESESESES
junp routine))))
ORG CHANGE Address for this routine is fixed
cycles

* ok ok %

CHGPAGEL
LDAA #$1 2 set current page nunber =1
STAA PAGE 2 store page page number
BCLR PORTD, Y, #NPAGE 8 Change page by cl earing PD-5
JWP 0, X 3 This code is the same in both pages

MOTOROLA

17

Application Note

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

0000f 80a
0000f 80a
0000f 80c
0000f 80e
0000f 810
0000f 811
0000f 811
0000f 815

0000f f cc
0000f f ce
0000f f dO
0000f f d2
0000f f d4
0000f f d6
0000f f d8
0000f f da
0000f f dc
0000f f de
0000f f e0
0000f f e2
0000f f e4
0000f f e6
0000f f e8
0000f f ea
0000f f ec
0000f f ee
0000fffO

—h —h —h —h —h —h —h

9600
8100
2701
3b

181d0820
3b

0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0235
0200
0200
0200
0200
0200
0200
0200

LR SR xY

* return frominterrupt routine running in page O
*
*
* check if interrupt occurred while code was running in page 1
* and return to page O before the RTI command is perforned
*
IR R R R R R RS R SRS R RS R RS RS EE R SRR R SRR EEEEEREEREEEEEEEEEEREEREEEEERSESES]
* cycles
RETRTI 1
LDAA PAGE 2 get page the interrupt occured in
CMPA #0 2 Is it page O
BEQ RTI PAGEL 3 if yes then change page
RTI 12 otherwise, return frominterrupt
RTI PAGE1
BCLR PORTD, Y, #NPAGE 8 change page and return from i nterrupt
RTI 12 This codes is the same in both pages
*
IR R R E R R RS RS RS RS R RS RS EEESE R SR EEEEEEEEEREEEEREEEEEEEEEEEEREEREEEEERSESEES
* VECTORS

*
LR L X EY

ORG VECTCORS

FDB RESET EVENT 2
FDB RESET EVENT 1
FDB RESET TI MER OVERFLOW 2
FDB RESET I NPUT CAPTURE 6 / OUTPUT COMPARE 7
FDB RESET I NPUT CAPTURE 5 / OUTPUT COWPARE 6
FDB RESET SCl
FDB RESET SPI
FDB RESET PULSE ACC | NPUT
FDB RESET PULSE ACC OVERFLOW
FDB RESET TI MER OVERFLOW 1
FDB RESET I NPUT CAPTURE 4 / OUTPUT COWPARE 5
FDB RESET OUTPUT COVPARE 4
FDB RESET OUTPUT COVPARE 3
FDB RESET OUTPUT COVPARE 2
FDB RESET OUTPUT COVPARE 1
FDB RESTE I NPUT CAPTURE 3
FDB RESET I NPUT CAPTURE 2
FDB RESET I NPUT CAPTURE 1
FDB I NTRI REAL TI ME | NTRRUPT
FDB RESET I RQ
FDB RESET Xl RQ
FDB RESET SW
FDB RESET | LLEGAL OPCODE
FDB RESET copP
FDB RESET CLOCK MONI TOR
RESET
LR R R R R R RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEREEEEEREEREEEREREEEEEEEEEEEEEEEEREEREEEEEESS
END

AN432

18

MOTOROLA

Application Note
Appendix B — Hardware and Software Paging Scheme

Appendix B — Hardware and Software Paging Scheme

OCoONOUITRWNE

AN432

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*kkkkkkkkxkkkkkk EXTENDB, ASC ****hkkkkkhkkkkkkkkkkkkkk kkhhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

TESTS EXTENDED MEMORY CONTROL

for a single IMbit (128K byte) EEPROM split into 48KB + 5 x 16KB
$4000 - $FFFF 48K COMVON PAGE

$0200 - $3FFF 16K PAGES 0,1, 2, 3,4

A multiplexer is used to switch between address and port D lines
controlled by PD5 and Al6 is controlled by /(PD5+Al4+Al5)

This ensures that Address Al6 is a logic 1 whenever Al4 or Al5 are
high and that all three lines nmust be |ow for the paged nenory between
addresses $00000 and $OFFFF.

SOURCE CODE EPROM
ADDRESS ADDRESS
0000 @ |----eemmeeeeeemeao- 00000
PAGE 0
4000 @ | ---eeeemmmeeeemmaoo- 04000
MAI N PAGE
0000 @ |----e-emeeeeeemeeeoo- 10000
PAGE 1
0000 @ |---eeemmmeeeeemeeeoo- 14000
PAGE 2
0000 @ |----eemmeeeeemeeaao- 18000
PAGE 3
0000 @ |----eeemmeeeeemeeeoo- 1C000
PAGE 4
3FFF | eeemeeee e 1FFFF
+- —
Al4 | -
______ I A |
| MUX s +
PD3 | |
------ B |
P N R R
+- I
I I
Feom e o + |
R Al4
+- —
Al5 | -
______ I A |
| MUX R Al5
PD4 |
------ B
| - IMBIT
+-" EPROM
I
oo [— +
I I
PD5 \ \ |
————————— \ \ |
Al4 \ \ |
——————————] NOR >0 ----------hmmmimeme e - Al6
Al5 / /
————————— / /
[
PD3, PD4 and PD5 = 1 AFTER RESET = |-----cmmmmmiiiaiam e

SINCE PULL- UP RESI STORS FORCE H GH STATE W TH PORT D AS | NPUTS
VWH CH DEFAULTS TO MAI N PROGRAM PLUS PAGE 0

R]

MOTOROLA

19

Application Note

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

00000000
00000001
00000004
00000006
00000007
00000008
00000009
00000024
00000025
00000040
00000040
00000026
00000080
00001000

00000000

00000200
00000400
0000f f cc

00000000
00000020
00000000
00000008
00000010
00000018

00000200
00000204
00000208

00004000
00004003
00004006
0000400a
0000400e
00004011
00004014
00004017
0000401a
0000401d
00004020
00004023
00004026
00004029
0000402c

181c0008
181d0008
7e4014

8e01f f
bd204e
181c0840
181d0840
bd4062
7e0200
bd406d
bd0200
bd4078
bd0200
bd4083
7e0200
bd408e
7e0200
20d8

PORTA EQU $00

DDRA EQU $01 68HCL1G5 only
PORTB EQU $04

PORTC EQU $06

DDRC EQU $07

PORTD EQU $08

DDRD EQU $09

TVBK2 EQU $24

TFL® EQU $25

RTI | EQU $40

RTI F EQU $40

PACTL EQU $26

DDRA7 EQU $80 68HCL1E9 only
REGS EQU $1000

R R

* RAM def i nitions

*
R R

* ORG $0000

TI ME RVB 2 Real tinme interrupt routine counter
*

ROVBASEO EQU $0200 Avoid RAM (from $0 to $1FF)
ROVBASE1 EQU $0400

VECTORS EQU $FFCC

*

RS EE RS RS SRR SRR SRR SRR RS RS R SR SRR EEEEEEEEEEEEEEEEEEEEEEEERERERE R R REEREEREEREEEESESESSES]
* PAGE 0 = $00000 - $04FFF (A16=0, A15=0, A14=0) => PAGE0=%0100000

* MAIN = $04000 - $OFFFF (A16=0) => START=%©01XX000

* PAGE 1 = $10000 - $13FFF (A16=1, A15=0, A14=0) => PAGE1=%0000000

* PAGE 2 = $14000 - $17FFF (A16=1, A15=0, Al4=1) => PAGE2=%0001000

* PAGE 3 = $18000 - $1BFFF (Al16=1, A15=1, A14=0) => PAGE3=%0010000

* PAGE 4 = $10000 - $1FFFF (Al6=1, Al15=1, Al4=1) => PAGE4=%©0011000

*

* PAGENn is added to %x000xxx to give the state of port

* D(3), D(4) and D(5).

*

START EQU $00

PAGEO EQU $20

PAGEL EQU $00

PAGE2 EQU $08

PAGE3 EQU $10

PAGE4 EQU $18

*
R R R

B e B T o o

*
* page 0 (1st hal f of EPROM
*
*
B 2 e A I o o o
* org ROVBASEO
LOOPPO BSET PORTA, Y, #$08
BCLR PORTA, Y, #$08 Toggl e Port A-3
JwP MAI NO return to main page
*
B o 2 e A I 2 o 2 2 o 2 2 o o o
* START OF MAI N PROGRAM
RS R RS RS SRR RS RS R R SRR R SRR SRR ESEEEEEEEEEEEEEEEEEEEEEEEEREEEREREEREREEREEREEREEREEESESESESSES]
*
* MAIN ROUTI NE NOT UNDER | NTERRUPT CONTROL
*
R R RS RS SRR RS RS R R SRR RS R SRR SRS EEEEEEEEEEEEEEEEEEEEEEEEREEREEEREREEREEREEREEREEESESESESESSES
ORG ROVBASEL
RESET LDS #$01FF
JSR SETUP initialize RTI interrupt and DDRs
LooP BSET PORTD, Y, #$40
BCLR PORTD, Y, #$40 mai n routine toggles port D2
JSR CHGAGEO sel ect page O
JwP LOOPPO Toggl e Port A-3
MAI NO JSR CHGPAGEL sel ect page 1
JSR LOOPP1 Toggl e Port A-4
JRS CHGPAGE2 sel ect page 2
JSR LOOPP2 Toggl e Port A-5
JSR CHGPAGE3 sel ect page 3
JWP LOOPP3 Toggl e Port A-6
VAl N3 JSR CHGPAGE4 sel ect page 4
JWP LOOPP4 Toggl e Port A-7
VAl N4 BRA LoorP start | oop again
*

R R

* I NI TI ALI ZATI ON RQUTI NE

R R
*

AN432

20

MOTOROLA

168
169
170
171
172
173
174
175
176
177
178
179
180

0000402e
0000402f
00004033
00004035
00004038
0000403b
0000403e
00004041
00004042
00004045
00004048
0000404a
0000404d
181 00004050 Oe

182 00004051 39

183 *
184
185 *
186 *
187 *
188
189
190
191
192
193
194

of
18cel000
86f f
b71001
b71009
7f 0000
7f0001
4f
b71000
b71008
8640
b71025
b71024

SETUP

00004052
00004054
00004057
00004059
0000405c
0000405e
195 0000405f df00

196 00004061 3b

197 *
198
199 *
200

201

202

203

204

205

206

207

208

209

210

211

212

213

*
*
*
*
*
*
*
*
*
*
*
*
*
*
214 *
*
*
*
*
*
*
*
*
*
*
*
*
*
*

8640
b71025
9601
b71004
de00

RTI SRV

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

PAGE 0
MAI' N

PAGE 1
PAGE 2
PAGE 3
PAGE 4

00004062
00004062
00004065
00004067
00004069
0000406¢

CHGPAGEO
b61008
84c7
8b20
b71008
39

237
238
239
240
241
242

0000406d
0000406d
00004070
00004072
00004074
00004077

CHGPAGEL
b61008
84C7
8b00
b71008
39

244
245
246
247

00004078
00004078
0000407b
0000407d
248 0000407f b71008

249 00004082 39

250 *

251 00004083 CHGPAGE3
252 00004083
253 00004086
254 00004088

CHGPAGE2
b61008
84c7
8b08

b61008
84c7
8b10

AN432

Real

SOURCE
ADDRESS
0000

4000

0000
0000
0000
0000
3FFF

$00000 -

$04000 -
$10000 -
$14000 -

$18000 -
$1C000 -

Application Note

Appendix B — Hardware and Software Paging Scheme

SEl
LDY #$1000
LDAA #$FF

STAA DDRA+REGS
STAA DDRD+REGS

CLR TI ME

CLR TI ME+1
CLRA

STAA PORTA+REGS
STAA PORTD+REGS
LDAA #9%©1000000
STAA TFLG2+REGS
STAA TMSK2+REGS
CLI

RTS

Regi ster address of fset

make port A all
make port D all

outputs (68HCL1GH)
out puts

clear the RTI
enabl e RTI

flag
interrupt

R R

time interrupt service routine

LDAA #9%©1000000
STAA TFL&2+REGS
LDAA TI ME+1
STAA PORTB+REGS
LDX TI ME

1 NX

STX TI ME

RTI

CODE

$03FFF (A16=0, A15=0, A14=0)
$OFFFF (A16=0)

$13FFF (A16=1, A15=0, A14=0)
$17FFF (A16=1, A15=0, A14=1)
$1BFFF (A16=1, A15=1, A14=0)
$1FFFF (A16=1, A15=1, A14=1)

LDAA PORTD+REGS
ANDA #9%41000111
ADDA #PAGEQ
STAA PORTD+REGS
RTS

LDAA PORTD+REGS
ANDA #9%11000111
ADDA #PAGEL
STAA PORTD+REGS
RTS

LDAA PORTD+REGS
ANDA #9%11000111
ADDA #PAGE2
STAA PORTD+REGS
RTS

LDAA PORTD+REGS
ANDA #9%41000111
ADDA #PAGE3

R R

clear TR flag

store counter in port B
get time counter

i ncrement counter

save counter value in RAM
Return frominterrupt

L R R R R

CHANGE PAGE
acc B (bits 3-5) contains the 1's conpl enent

of new page nunber address

>

EPROM
ADDRESS
00000

04000

10000
14000
18000
10000

1FFFF

PAGEO=%0©0100000
START=%001XX000
PAGE1=%00000000
PAGE2=9%0©0001000
PAGE3=%0©0010000
PAGE4=%©0011000

R R R R R R

get port D data

make mddle 3 bits |ow state

add PAGE descriptor to this

wite back to port D

(only bits 3, 4 and 5 are changed)

get port D data

make mddle 3 bits |ow state

add PAGE descriptor to this

wite back to port D

(only bits 3, 4 and 5 are changed)

get port D data

make mddle 3 bits |ow state

add PAGE descriptor to this
wite back to port D

(only bits 3,4 and 5 are changed)

get port D data
make mddle 3 bits |ow state
add PAGE descriptor to this

MOTOROLA

21

Application Note

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

0000408a
0000408d

0000408e
0000408e
00004091
00004093
00004095
00004098

0000f f cc
0000f f ce
0000f f dO
0000f f d2
0000f f d4
0000f f d6
0000f f d8
0000f f da
0000f f dc
0000f f de
0000f f e0
0000f f e2
0000f f e4
0000f f e6
0000f f e8
0000f f ea
0000f f ec
0000f f ee
0000ff O

00000200
00000204
00000208

00000200
00000204
00000208

00000200
00000204
00000208

00000200
00000204
00000208

b71008
39

b61008
84c7
8b18
b71008
39

4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4052
4000
4000
4000
4000
4000
4000
4000

181c0010
181d0010
39

181c0020
181d0020
39

181c0040
181d0040
7e4026

181c0080
181d0080
7e402c

STAA
RTS

CHGPAGE4
LDAA
ANDA
ADDA
STAA
RTS

*

PORTD+REGS

PORTD+REGS
#941000111
#PAGE4

PORTD+REGS

wite back to port D
(only bits 3, 4 and 5 are changed)

get port D data

make mddle 3 bits |ow state

add PAGE descriptor to this

wite back to port D

(only bits 3, 4 and 5 are changed)

R L R R

* VECTORS

L L R R

*

*

VECTCORS
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RTI SRV
RESET
RESET
RESET
RESET
RESET
RESET
RESET

EVENT 2
EVENT 1

TI MER OVERFLOW 2

I NPUT CAPTURE 6 / QUTPUT COVPARE 7
I NPUT CAPTURE 5 / QUTPUT COVPARE 6
sa

SPI

PULSE ACC | NPUT

PULSE ACC OVERFLOW

TIMER OVERFLOW 1

I NPUT CAPTURE 4 / QUTPUT COVPARE 5
OUTPUT COMPARE 4

OUTPUT COMPARE 3

OUTPUT COMPARE 2

OUTPUT COMPARE 1

I NPUT CAPTURE 3

I NPUT CAPTURE 2

I NPUT CAPTURE 1

REAL TI ME | NTRRUPT

I RQ

Xl RQ

sw

| LLEGAL OPCODE

coP

CLOCK MONI TOR
RESET

R R R R

L

*

* page 1 (2nd hal f of EPROV

*

*

B o o L 2o S 2 2 o o i
org ROVBASEOQ

LOOPP1 BSET PORTA, Y, #$10
BCLR PORTA, Y, #$10
RTS

B e o i R

*

* page 2 (2nd hal f of EPROM

*

*

B I o 2 e
org ROVBASEOQ

LOOPP2 BSET PORTA, Y, #$20
BCLR PORTA, Y, #$20
RTS

B R o e

*

* page 3 (2nd hal f of EPROM

*

*

B I o 2 St i b o
org ROVBASEOQ

LOOPP3 BSET PORTA, Y, #$40
BCLR PORTA, Y, #$40
JIMP MAI N3

¥ b b bbb b bbb bbb b bbb bbb b b

*

* page 4 (2nd hal f of EPROM

*

*

B e i i R S
org ROVBASEOQ

LOOPP4 BSET PORTA, Y, #$80
BLCR PORTA, Y, #$80
JIMP MAI N4

Toggl e Port A-7
return to mai n page

R R R R R

END

AN432

22

MOTOROLA

Application Note

Appendix C — C Language Routines for Method B

Appendix C — C Language Routines for Method B

/* CHGPAGE. C

~_——————————
EE I N U

{
chg

Port A - 3 input only,

5 out

put only */

Mot orol @’ s unknown register */

Parallel 1/0O control */
Port C */
Port B - Qutput

Al ternate port

only */
C latch

*/

Mot orol @’ s unknown register 2 */

Data direction for port
Port D */
Data direction for port
Port E */

C*/
D */

/* Dummy function in page 0 */
/* Dummy function in page 2 */

page(page2) ;

/* Change page using inline code */

fun
/*
fun
/*

fun
/*
}

VOoi
byt

{
chg

c_i n_page2();
Call f

c_chgpage(page0) ;

unction in page 2 */

Change page using function call */

c_i n_pageO();
Call f

d func_chgpage(p)
e p;

page(p);

* C coded extended nenory control for 68HCL1
*
* */
*
IR R E R R R R RS RS RS RS RS RS RS RS R R SRS R EEEEEREEEEEEEEEEEEEEEEEE R R R R REEREEREEESEESESRESES
/* HC11l structure - 1/O registers for MOB8HCL1 */
struct HC11l O {
unsi gned char PORTA,;
unsi gned char Reserved;
unsi gned char Pl OC;
unsi gned char PORTC,
unsi gned char PORTB;
unsi gned char PORTCL;
unsi gned char Reservedl;
unsi gned char DDRC;
unsi gned char PORTD;
unsi gned char DDRD;
unsi gned char PORTE;
k3 End of structure HC11I O */
IR EE R R R R RS RS RS RS RS RS RS R ERE R SRR R EEEREEEREEEEEEREEEEEEEE R R R REEREEREEESEESESESESES]
* #defi ne regbase (*(struct HC11I 0O *) 0x1000)
* typedef unsigned char byte;
*
* /* Some arbitrary user defined val ues */
* #defi ne page0 0x20
* #defi ne pagel 0x00
* #defi ne page2 0x08
* #defi ne pagenask 0xc7
*
* /* Macro to generate in line code */
* #defi ne chgpage (a) regbase. PORTD = (regbase. PORTD & pagemask) + a
*
* /* Function prototype */
* voi d func_chgpage (byte p);
*
* /* Externally defined functions in separate pages */
* extern void func_in_pageO();
* extern void func_in_page2();
*
e LR T T conpi |l ed assenbly code
*
6 0000 mai n: fbegin
*
*
8 0000 61008 | dab $1008
9 0003 cac7 andb $199
10 0005 cbh08 addb #8
11 0007 f71008 st ab $1008
*
13 000a >hd0000 jsr func_i n_page2
*
*
15 000d cc0020 | dd #32
16 0010 8d04 bsr func_chgpage
*
18 0012 >hd0000 jsr func_i n-page0
*
20 0015 39 rts
21 0016 fend
*
*
24 0016 func_chgpage: f begi n
25 0016 37 pshb
*
*
27 0017 61008 | dab $1008
28 00la c4c7 andb #199
29 001c 30 t sx
30 001d eb00 addb 0, x
31 001f f71008 st ab $1008
*
33 0022 31 ins
34 0023 39 rts
35 0024 fend
36 i mport func_i n_page2
37 i mport func_i n_page0
30 end
AN432

unction in page 0 */

MOTOROLA

23

Application Note

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer’s technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the

i

design or manufacture of the part. Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334
Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors/

© Motorola, Inc.,1990, 2001

AN432/D

@ MOTOROLA

	Overview
	Paging Scheme
	Method A�—�Software Technique
	Interrupt Routines
	Other Routines
	Important Conditions

	Method B — Combined Hardware and Software Technique
	Implementation in C Language
	Interrupt Conditions
	Important Conditions
	Customization

	In General
	Beyond 128 Kbytes

	In Conclusion
	Appendix A — Software Paging Scheme
	Appendix�B�—�Hardware�and Software Paging Scheme
	Appendix�C�—�C�Language Routines for Method B

